
PB96-148564
OTIS
Information is our business.

APPROXIMATING MATCHINGS IN PARALLEL

■6

STANFORD UNIV., CA

JUN 91 worn of

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

i/lblRlBÜllLW ülArUrikhT A

Approved for public release;
Distribution Unlimited

BIBLIOGRAPHIC INFORMATION
PB96-148564

Report Nos: STAN-CS-91-1369

Title: Approximating Matchings in Parallel.

Date: Jun 91

Authors: T. Fischer, A. V. Goldberg, and S. Plotkin.

i^s«; %$$£?*&"*■ °f — M 7; e
Sg-on^^

Contraot Nos: ONR-N0M14-88-K-0166. NSF-CCR-8858097. NSF-CCR-900-8226.
ARU-UAAL-UJ-91-G-0102
EiilsMg£2aL<Mes: 72E (Operations Research), 62B (Computer Software)

Price- PC A02/MF A01 . ■
^abnn,: Available fro» the National Techno Infon»t1cn Service, Spnngf,eld.

VA. ^ibl

Number of Pages: 8p ■ +■„„

»* äää ss raswrf•" w1th card,nal y

June 1991 Report No. STAN-CS-91-1369

PB96-148564

Approximating Matchings in Parallel

by

T. Fischer, A.V. Goldberg, S. Plotkin

Department of Computer Science

Stanford University
Stanford, California 94305

REPRODUCED BY:
U-

US: P'P"»""..« of Commerce
National Technical Information Service

Springfield, Virginia 22161

REPORT DOCUMENTATION PAGE
OAfi M» OTOt-CtU

ST PB9B-i485B4~~ JCTS»«tt^;«5S3Sa8^^
1. REPORT OATI

June 1991
4. TlTlt ANO SUiTITU

Approximating Matchings in Parallel

t. AUTHOR(S)

HD-WMMMfwn. ec mu.
3. REPORT TYPE ANO OAfsi COVERED

Ted Fischer, Andrew Goldberg, Serge Plotkin

7. PERFORMING ORGANIZATION NAME(S) ANO ADORESS(ES)

Computer Science Department
Stanford University
Stanford, CA 94305

i. FUNDING NUMtIRS

I. PERFORMING ORGANIZATION
REPORT NUMRER

STAN-CS-91-1369

t. SPONSORING/MONITORING AGENCY NAME(S) ANO AOORESS(ES)

ONR
Arlington, VA 22217

10. SPONSORING / MONITORING
AGENCY REPORT NUMIER

11. SUPPLEMENTARY NOTES

12«. DISTRIBUTION/AVAILABILITY STATEMENT

unlimited

13. ABSTRACT (MiMimum 200 ¥*om)

12b. DISTRIBUTION CODE

We show that for any constant k > 0, a matching with cardinality at least
1 - l/(k+l) times the maximum can be computed in NC.

U. SUBJECT TERMS 1S. NUMBER OF PAGES
5

1«. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

1B. SECURITY CLASSIFICATION
OP THIS PAGE

19. SECURITY CLASSIFICATION
OP ABSTRACT

20. LIMITATION OF ABSTRACT

MSN 7540-01-280S500 ixanottO fOfm 299 :a»v

Approximating Matchings in Parallel

Ted Fischer* Andrew V. Goldbergt Serge Plotkin*

June 1991

•Department of Computer Science, Cornell University, Ithaca NY 14853. Research supported by ONR Graduate
Fellowship.

'Department of Computer Science, Stanford University, Stanford CA 94305. Research partially supported by NSF
Presidential Young Investigator Grant CCR-8858097 with matching funds from AT&T and DEC, a grant from 3M
Corporation, a grant from Mitsubishi Corporation, and ONR Contract N00014-88-K-0166.

»Department of Computer Science, Stanford University, Stanford CA 94305. Research supported by NSF Research
Initiation, Award CCR-900-8226, by U.S. Army Research Office Grant #DAAL-03-91-G-0102, and by ONR Contract
N00014-88-K-0166.

PROTECTED UNDER INTERNATIONAL COPYRIGHT
ALL RIGHTS RESERVED.
NATIONAL TECHNICAL INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE

Abstract

We show that for any constant k > 0, a matching with cardinality at least 1 - ^ times the
maximum can be computed in NC.

1 Introduction

Matching is a fundamental combinatorial problem. (See [10, 15].) Furthermore, the special case
of bipartite matching seems to be a important problem of parallel computation. For example, an
NC algorithm for bipartite matching would imply NC algorithms for the problems of constructing
depth-first search trees in both directed and undirected graphs. (See Aggarwal and Anderson [1]

and Aggarwal, Anderson, and Kao [2].)

During the last decade, parallel algorithms for the bipartite matching problem received a lot of
attention. The best currently known deterministic algorithms for the problem are due to Goldberg,
Plotkin, and Vaidya [6] and Goldberg, Plotkin, Shmoys, and Tardos [5]. These algorithms run

in 0*(n2lz) and 0*(m1/2) time, respectively1. (Here n denotes the numebr of nodes and m the

number of edges in the input graph.)

Special cases of the bipartite matching problem are known to be in NC. Lev, Pippenger, and
Valiant [11] gave an NC algorithm to find a perfect matching in a regular bipartite graph. Miller
and Naor [13] gave an NC algorithm to find a perfect matching in a planar bipartite graph (if one

exists).

Matching was shown to be in RNC by Karp, Upfal, and Wigderson [9] (see also [14] for a simpler

and faster algorithm). However, the general problem is not known to be in NC.

In this paper we consider the problem of approximating maximum matchings in an arbitrary
graph. We describe an NC algorithm that, for a constant k > 0, finds a matching with cardinality

of at least 1 - 55+1 times tlie maximum. Our algorithm runs in O(log3n) time using 0(n2k+2)
processors.

2 Preliminaries

In this section we introduce the notation and the parallel computation model.

Let G = (V, E) be an undirected graph. Define n = \V\, m = \E\. A set of edges M C E is a
matching if no two edges of M share a node. The cardinality of the matching is \M\. The matching
problem is to find a matching of maximum cardinality.

Given a matching M, we say that a node v is matched if (v, w) € M for some w € V and free
otherwise. An augmenting path is a simple path P = VQ, VI, ..., v\ such that the endpoints v0 and vi
are free, for odd i in [0.../] we have (v{, v;+i) G M, and for even t we have (t>,-, Vi+i) € E-M. We

'We say that an algorithm runs in 0*(/(n)) time if it runs in 0(/(n) log*(n)) time for some constant fc.

define the length of a path to be the number of edges on the path. Note that since the endpoints
are free, the above definition implies that the length of an augmenting path must be odd. Given
an augmenting path, we can augment the matching M by deleting from M the edges on the path
that are in M, and adding all of the other edges on the path to M. This results in a matching with
one more edge. It is a well known fact that the absence of an augmenting path implies optimally

of the current matching.

Our model of parallel computation is the exclusive-read, exclusive-write parallel random-access
machine (EREW PRAM) [4]. We assume that the reader is familiar with the algorithm for parallel

list compression [3] in the context of this model.

3 Algorithm Description

The main idea of the algorithm is to augment along "short" augmenting paths until all augmenting
paths are "long". Lemma 4.2 of the next section shows that if a matching does not admit a short
augmenting path, then its cardinality is close to the optimum.

The input to our algorithm is a graph G = (V, E) and a positive integer k, and its output is
a matching M of G which admits no augmenting paths of length 2k - 1 or less. The algorithm
makes Jfc iterations; at iteration z, it finds a maximal set of node-disjoint augmenting paths of length
2z - 1 and augments along these paths. We denote the matching maintained by the algorithm by

M. Initially M = 0.

The z'-th iteration works as follows. First, the algorithm constructs a graph A = (VA, EA) with
nodes in VA corresponding to augmenting paths of length 2i - 1. A pair of nodes is connected by
an edge if the corresponding paths share a node. Next, the algorithm finds a maximal independent
set in A, and augments the current matching in G along the paths corresponding to the chosen

nodes.
Observe that a maximal independent set of nodes in A corresponds to a maximal set of aug-

menting paths of length 2t - 1 in G\ since the nodes are independent, the augmenting paths are
disjoint, and no conflict will arise when the augmentations are performed in parallel.

It remains to describe how to construct the graph A. Now, a path is uniquely defined by the
ordered sequence of nodes it connects. To generate all paths of length 2z - 1, we could consider all
sequences of 2z nodes, testing the existence of the necessary connecting edges. This would generate
0(n2«-i) paths. However, we are only interested in those sequences, JT, which form augmenting
paths. On an augmenting path, every node is matched except for the endpoints of the path.

Rather than considering all sequences of 2z nodes, we need only choose a sequence of z - 1
edges from the matching, then choose two unmatched nodes for the endpoints. Let the sequence of
edges be * = (v2,v3),(v4,v5),...,(v2i.2,v2i-i), with the two endpoints t* and v2i. The sequence

corresponds to the path with the edges (t>i,v2),(v3,v4),...(v2i-i,v2i) added to the ones from the
sequence. Observe that this generates all sequences corresponding to augmenting paths of length

2i, yet it only generates 0(ra,+1) different sequences.

We construct all sequences TT of i - 1 edges from M and two endpoints as described above,
and assign i processors to each sequence. We then test the existence of edges (t>2j-i,t>2j) in E for
j = 1.. .i. Since the sequence of edges was selected from M, and the edges being tested all share
at least one node with an edge from the sequence, the tested edges cannot be in M. Therefore, if
the edges are all in E, the sequence corresponds to an augmenting path. Using i processors per
path, the construction takes O(log n) time. Using list compression [3] to eliminate the sequences

which do not form augmenting paths, we then construct VA in O(logn) time.

To determine for X,Y € VA if the edge (X,Y) should be in EA, we need to check if their
corresponding paths share any nodes. Using i processors for each pair of paths, we can test this in
O(logn) time.

4 Correctness and Analysis

First we prove that the algorithm is correct. The following lemma of Hopcroft and Karp implies
that there are no augmenting paths of length 2i - 1 or less after iteration i.

Lemma 4.1 [8] if a matching is augmented along a maximal set of shortest augmenting paths, then

the shortest augmenting path length increases.

The next lemma is the heart of the correctness proof of our algorithm. Intuitively, the lemma
states that if a matching does not admit short augmenting paths, then its cardinality is close to
optimal.

Lemma 4.2 Suppose a matching M does not admit augmenting paths of length 2fc — 1 or less. Then

\M\ > 4J-|M*|.

Proof: Let M and M* denote the current and optimum matchings, respectively. Consider the
symmetric difference between M and M*. It contains |M*| — \M\ node-disjoint augmenting paths
with respect to M. Since each of these paths contains at least k edges of M, we have |M*| - \M\ <

\M\/k, or

I

The above two lemmas imply that the algorithm is correct:

Theorem 4.3 The matching M found by the algorithm satisfies \M\ > ^-|M*|.

3

Next we analyse time and processor requirements of iteration t of the algorithm.

Lemma 4.4 On an EREW PRAM, iteration i of the algorithm runs in 0(\o^n) time using 0(tn2,+2)
processors.

Proof: First we consider the construction of VA. The number of sequences n generated in the

construction of A is 0(n,+1). Since we assign t processors to each sequence, TT, we use 0(»n,+1)
processors in the construction.

To construct E\, we assign i processors to each pair of nodes in V4. Since the number of

nodes in V4 is 0(ni+1), we can implement this task with 0(tn2,+2) processors. Note also that

\EA\ = 0(n2'+2).

As shown in the previous section, A can easily be constructed in 0(log n) time.

The next step of the algorithm finds a maximal independent set in A. Using 0(n2,+2) processors

(linear in the size of A), this can be done in 0(log3 n) time using the algorithm of Goldberg and

Spencer [7]. (Luby's algorithm [12] can also be used, but its deterministic version runs in 0(log4 n)

time.)

The final step of every iteration is the augmentation. It is easy to see that this step can be
completed in constant time using no additional processors. I

Remark: The processor bound of the above lemma can be improved slightly by balancing the
first step of the algorithm (construction of A) with the second step (maximal independent set

computation). We can decrease the number of processors used to construct A by a factor of log2 n.

The resulting implementation still runs in 0(log3 n) tune, but the processor requirement is reduced

by a factor of log2 n.

Theorem 4.5 On an EREW PRAM, the algorithm runs in 0(fclog3n) time using 0(kn2k+2) proces-
sors.

Proof: Immediate from Lemma 4.4. |

Corollary 4.6 If A: is a constant, the algorithm runs in ^(log3 n) time using a polynomial number of
processors.

References

[1] A. Aggarwal and R. J. Anderson. A Random NC Algorithm for Depth First Search. In Proc.
19th Annual ACM Symposium on Theory of Computing, pages 325-334,1987.

[2] A. Aggarwal, R. J. Anderson, and M.-Y. Kao. Parallel Depth-First Search in General Directed
Graphs. In Proc. 21st Annual ACM Symposium on Theory of Computing, pages 297-308,1989.

[3] R. Cole. Parallel merge sort. In Proc. 27th IEEE Annual Symposium on Foundations of
Computer Science, pages 511-516,1986.

[4] S. Fortune and J. Wyllie. Parallelism in Random Access Machines. In Proc. 10th Annual ACM
Symposium on Theory of Computing, pages 114-118,1978.

[5] A. V. Goldberg, S. A. Plotkin, D. Shmoys, and E. Tardos. Interior-Point Methods in Parallel
Computation. Technical Report STAN-CS-89-1259, Stanford University, 1989.

[6] A. V. Goldberg, S. A. Plotkin, and P. M. Vaidya. Sublinear-Time Parallel Algorithms for
Matching and Related Problems. In Proc. 29th IEEE Annual Symposium on Foundations of
Computer Science, pages 174-185,1988.

[7] M. Goldberg and T. Spencer. A New Parallel Algorithm for the Maximal Independent Set
Problem. In Proc. 28th IEEE Annual Symposium on Foundations of Computer Science, pages
161-165,1987.

[8] J. E. Hopcroft and R. M. Karp. An n5/3 Algorithm for Maximum Matching in Bipartite
Graphs. SIAMJ. Comput, 2:225-231,1973.

[9] R. M. Karp, E. Upfal, and A. Wigderson. Constructing a Maximum Matching is in Random
NC. Combinatorica, 6:35-48,1986.

[10] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Reinhart, and
Winston, New York, NY., 1976.

[11] G. F. Lev, N. Pippenger, and L. G. Valiant. A Fast Parallel Algorithm for Routing in Permu-
tation Networks. IEEE Trans, on Comput, C-30:93-100,1981.

[12] M. Luby. Removing Randomness in Parallel Computation without a Processor Penalty. In
Proc. 29th IEEE Annual Symposium on Foundations of Computer Science, pages 162-173,
1988.

[13] G. L. Miller and J. Naor. Flow in Planar Graphs with Multiple Sources and Sinks. In Proc.
30th IEEE Annual Symposium on Foundations of Computer Science, 1989.

[14] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as Easy as Matrix Inversion.
Combinatorica, pages 105-131,1987.

[15] R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1983.

©
Im
u

+* E

&•*

5- «
©^
* >

y ■■■

o =

p. £

■ö

• p«

•-£

a>
^ E
E
L. C3

+■> p.

0
c <

tt •
QJ ■o 0 B "0 B

c» 0>
NH J»
H u
Z ©

JE ^

■o'"
o o

© •■- ^a
S c

•■= ©

.5 bx

■8 £

tZ) E

Reproduced by NTIS
National Technical Information Service
U.S. Department of Commerce
Springfield, VA 22161

This report was printed specifically for your
order from our collection of more than 2 million
technical reports.

For economy and efficiency, NTIS does not maintain stock of its vast
collection of technical reports. Rather, most documents are printed for
each order. Your copy is the best possible reproduction available from
our master archive. If you have any questions concerning this document
or any order you placed with NTIS, please call our Customer Services
Department at (703) 387-4660.

Always think of NTIS when you want:
• Access to the technical, scientific, and engineering results generated
by the ongoing multibillion dollar R&D program of the U.S. Government.
• R&D results from Japan, West Germany, Great Britain, and some 20
other countries, most of it reported in English.

NTIS also operates two centers that can provide you with valuable
information:
• The Federal Computer Products Center - offers software and
datafiles produced by Federal agencies.
• The Center for the Utilization of Federal Technology - gives you
access to the best of Federal technologies and laboratory resources.

For more information about NTIS, send for our FREE NTIS Products
and Services Catalog which describes how you can access this U.S. and

foreign Government technology. Call (703) 487-4650 or send this
sheet to NTIS, U.S. Department of Commerce, Springfield, VA 22161.
Ask for catalog, PR-827.

Name
Address

Telephone,

Your Source to U.S. and Foreign Government
Research and Technology

,x

*>*rtx<* J
U.S. DEPARTMENT OF COMMERCE

Technology Administration
National Technical Information Service

Springfield, VA 22161 (703) 487-4650

